

Half versus Quarter Diopter Steps A Mathematical Model

James S. Lewis, MD

I get more precision

There is too much noise

Half versus Quarter Diopter Steps

n = 100000; (* datapoints*) iolpowerformulaerror = .3; (*formula error sd*)

de = .25; (*denomination error sd*) me = de/2; (*manufacturer error sd*)

de2 = .5; (*denomination error sd*) me2 = de2/2; (*manufacturer error sd*)

residualuncorrectedastigmaticerror = .2; (*astigmatism error*)

tol = .625; (*tolerance*) Manipulate[j =SphericalPlot3D[{tol, tol, tol}, { θ , 0, 1.2 Pi}, { ϕ , 0, 1.2 Pi}]; (*acceptable sphere of values*)

k = SphericalPlot3D[{1.5, 1.5, 1.5}, {θ, 0, Pi}, {φ, 0, Pi}];

spe = RandomVariate[NormalDistribution[0, iolpowerformulaerror], n]; axe = Table[RandomReal[$\{1, 360\}$], $\{n\}$]; men = Table[RandomReal[{-me, me}], {n}]; ase =RandomVariate[NormalDistribution[0, residualuncorrectedastigmaticerror],

nl:

den = RandomVariate[NormalDistribution[0, de/2], n];

 $men2 = Table[RandomReal[\{-me2, me2\}], \{n\}];$

den2 = RandomVariate[NormalDistribution[0, de2/2], n];

g =(*results without noise*)Table[{spe[[i]], ase[[i]]*Sin[axe[[i]]/2 Pi], ase[[i]]*Cos[axe[[i]]]/2 Pi}, {i, n}]; e = spe + den + men;

f = spe + den2 + men2;meanE = Mean[e]; sdE = StandardDeviation[e]; meanF = Mean[f];sdF = StandardDeviation[f]; q =(*results with noise*)Table[{e[[i]], ase[[i]]*Sin[axe[[i]]/2 Pi], $ase[[i]]*Cos[axe[[i]]]/2 Pi\}, \{i, n\}];$ $r = (*results with noise 2*)Table[{f[[i]], ase[[i]]*Sin[axe[[i]]/2 Pi],$ ase[[i]]*Cos[axe[[i]]]/2 Pi}, {i, n}]; bn = ListPointPlot3D[g, PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}, {-1.5, 1.5}}, PlotStyle -> Yellow]; cn = ListPointPlot3D[q, PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}, {-1.5, 1.5}}, PlotStyle -> Blue]; dn = ListPointPlot3D[r, PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}, {-1.5, 1.5}}, PlotStyle -> Pink]; b = ListPlot[spe, PlotRange -> {-1.5, 1.5}, PlotStyle -> Yellow]; $c = ListPlot[e, PlotRange -> \{-1.5, 1.5\}, PlotStyle -> Blue];$ $d = ListPlot[f, PlotRange -> \{-1.5, 1.5\}, PlotStyle -> Pink];$ {Histogram[{e, f}, 20], SmoothHistogram[{e, f}], Show[$\{b, c, d\}$], Show[$\{k, bn, cn, dn, j\}$] {iolpowerformulaerror, .1, .6}, {residualuncorrectedastigmaticerror, .3, .5},

SaveDefinitions -> True]

Astigmatism

Lifecycle of an IOL

Need an 18.65 but I rounded up and there were only .5 D steps

Tolerance

IOL is 0.59 higher than desired

Guidance for Industry and for FDA Reviewers

Intraocular Lens Guidance Document

Draft Guidance – Not for Implementation

This guidance document is being distributed for comment purposes only. Draft released for comment on [release date as stated in FR Notice]

Manufacturing Tolerances

Table 1 - Tolerances on dioptric power

Nominal dioptric power range (D)

0 to ≤ 15

 $> 15 \text{ to} \le 25$

> 25 to ≤ 30

> 30

U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health

Intraocular and Corneal Implants Branch Division of Ophthalmic Devices Office of Device Evaluation

GDL 1

99D-4054

Saturday, February 25, 12

Tolerance on dioptric power (D)

 ± 0.3 ± 0.4 ± 0.5 ± 1.0

The Softec PS has a tolerance of 0.125 D. Tetraflex has a tolerance of 0.10 D

Dioptric Steps

Bausch + Lomb

Crystalens

- Softec HD
- Tetraflex

8

SRK/T	f
18.23	18.46
18.73	19.06
19.23	19.56

$95\% \pm .10$ $99\% \pm .15$ $95\% \pm .20$ $99\% \pm .30$ $95\% \pm .30$ $99\% \pm .45$ $95\% \pm .40$ $99\% \pm .60$ E $95\% \pm .50$ $99\% \pm .75$

calc

*assuming your exact IOL is available zero tolerance, infinite steps

Exact Exact IOL Power Available

Surgeon A

Surgeon C

- Surgeon A: Clinical results are degraded by both Quarter and Half **Diopter Steps**
- Surgeon C: Clinical results are acceptable with Quarter Diopter Step but degraded by Half Steps
- Surgeon E: Clinical results are not degraded by Quarter or Half **Diopter Steps**

Surgeon E

results

Quarter Diopter Steps Alternatives

- **Exact Labeling**
 - **TECHNOMED EASYCARE 600** (Technomed, Baesweiler, Germany)
 - Expense, Delay, Rigidity
 - Neuhann, Hoffer, many others
- **Inventory Optimized Lens Selection**
 - FDA and labeling issues
 - Web-based exact power lookup

Inventory Optimized

Saturday, February 25, 12

Collect all lenses labeled 18.5 and 19.0 and determine exact power from web

NEW

Conclusion

- Quarter diopter steps yield improved clinical results over Half Diopter steps when 99% of your patients are within 0.50 diopters of target.
- Conversely, Quarter Diopter Steps have no value if 95% of your patients aren't within 0.50 diopters of target.
- **Inventory Optimized Lens Selection** is as good an upgrade as quarter diopter steps